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Abstract

Purpose. Advancements in eye and vision care hinge on the 
rigorous application of research and the precise interpretation 
of clinical data. However, the field of Eye and Vision Research 
(EVR) frequently encounters research waste attributed to 
methodological flaws and improper statistical analyses, un-
dermining the validity of studies and inefficiently utilising 
substantial financial resources. This paper, the first instalment 
in the series “Advancing Statistical Literacy in Eye Care: A Se-
ries for Enhanced Clinical Decision-Making,” aims to address 
these challenges by enhancing the statistical literacy of eye 
care professionals.

Material and Methods. Through a comprehensive narrative 
literature review and the generation of simulated clinical 
datasets, this study identifies essential statistical concepts, 
common pitfalls, and best practices pertinent to EVR. The 
literature review used multiple databases, including PubMed, 
Scopus, and Web of Science, focusing on peer-reviewed 
articles and professional textbooks relevant to statistical 
methodologies. Simulated datasets reflecting realistic clin-
ical measurements, such as pupil diameter, refractive error, 
central corneal thickness, and intraocular pressure, were 
created using Python to illustrate key statistical principles 
and their applications.

Results. The paper explores fundamental statistical con-
cepts, including data types (nominal, ordinal, metric), data 
preparation techniques, handling missing data and outliers, 
and applying descriptive statistics. Additionally, it explores 
data distribution characteristics, normality assessment, and 
data transformation methods to ensure robust and reliable 
statistical analyses. By bridging theoretical knowledge with 
practical examples, this instalment seeks to equip eye care 
professionals with the tools to critically evaluate research, 
integrate evidence-based practices, and contribute mean-
ingfully to the scientific community. 

Conclusion. This study establishes a foundational framework 
to enhance statistical literacy among eye care professionals 
by exploring essential statistical concepts and best practices 
in EVR. By addressing common methodological flaws and im-
proper analyses, it aims to reduce research waste and improve 
the validity of studies. Ultimately, this initiative is expected 
to promote more accurate data interpretation, better clinical 
decision-making, and improved patient care in the field of 
eye and vision health.
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Introduction

Advancements in eye and vision care depend on rigorous 
research and precise clinical data interpretation. As eye care 
professionals navigate an ever-expanding body of scientific 
literature, understanding and applying appropriate statistical 
methods cannot be overstated. Statistical literacy is essential 
for critically evaluating research, integrating evidence-based 
practices, and contributing to the scientific community. 

Evidence-based practice is essential to eye and vision 
care, guiding diagnosis, treatment, and overall patient care 
through high-quality research supported by sound statistical 
methods.1-5 However, the field faces significant challenges 
due to studies often plagued by methodological flaws, and 
improper statistical analysis, which undermine research valid-
ity and contribute to unnecessary use of resources on studies 
that fail to yield reliable findings (research waste).3-5 

Research waste in ophthalmology is a severe issue, leading 
to inefficiencies and resource waste.5 For instance, only 22.4 % 
of phase III ophthalmology trials cite systematic reviews as a 
justification for the study, missing opportunities to build on 
existing evidence and resulting in redundant research.6 In 
surgical studies, the problem is exacerbated by poor meth-
odological rigour, often resulting in incomplete or invalid 
findings. Estimates suggest that up to 85 % of global health 
research, representing a substantial portion of the $ 200 
billion annual expenditure, may be wasted due to non-pub-
lication, unclear reporting and lack of systematic review use 
in study design.7-9 In EVR, this waste commonly stems from 
inadequate sample sizes, inappropriate statistical tests, or 
misinterpreting results.7-9 A review of ophthalmic literature 
found a substantial portion of published studies contained 
statistical inaccuracies, further eroding research credibility 
and slowing the progression of evidence-based practice.8-10 

Improving statistical literacy among researchers and cli-
nicians is crucial to addressing these issues. A solid under-
standing of statistical principles and correct application can 
enhance research quality, reduce waste, and support evi-
dence-based patient care through reliable and valid findings.

Methods

This article is the first instalment in a five-part series designed 
to enhance statistical literacy among eye care professionals. 
To accomplish this, a two-pronged methodological approach 
was employed: a comprehensive literature review and the 
creation of simulated datasets to exemplify key statistical 
concepts pertinent to Eye and Vision Research (EVR).

A narrative literature review was conducted to identify 
essential statistical concepts, common pitfalls, and best prac-
tices in applying statistical methods within EVR. The literature 
search was performed across multiple databases, including 
PubMed, Scopus, and Web of Science, covering publications 
up to October 2024.

Keywords and Search Terms: The search utilised combina-
tions of terms such as “vision science“, “statistical methods“, 

“data analysis“, “clinical research“, “biostatistics“, “eye care“, 
“research methodology“, “data distribution“, “missing data“, 
“outliers“, and “statistical literacy“.

Inclusion Criteria: We included peer-reviewed articles and 
professional textbooks that focused on statistical methods 
applicable to ophthalmology and optometry, studies high-
lighting common statistical errors in EVR, guidelines on best 
practices for data analysis in clinical research, and articles 
emphasising the importance of statistical literacy in eye care.

Exclusion Criteria: Articles not directly related to statistical 
methods in eye care, non-English publications, conference 
abstracts without full texts, and studies lacking methodolog-
ical details were excluded.

Data Extraction and Synthesis: Relevant articles were initially 
selected based on title and abstract screening, followed by 
full-text reviews. Key information extracted included statis-
tical concepts discussed, common errors identified, recom-
mendations for best practices, and implications for clinical 
decision-making. The findings were synthesised thematically 
to provide a comprehensive overview of fundamental statis-
tical concepts, data types, data preparation, and descriptive 
statistics relevant to eye care professionals.

Simulated Data Generation: To provide practical examples 
and visual illustrations of the statistical concepts discussed, 
we generated simulated datasets using Python (V3.12.4). 
The datasets were crafted to reflect realistic clinical data 
commonly encountered in EVR, focusing on pupil diameter 
(n = 1000), refractive error (n = 1000), and central corneal 
thickness and intraocular pressure (CCT, IOP, n = 1000). The 
data were modelled to follow a given distribution with pa-
rameters (mean and standard deviation) reflective of typical 
clinical observations (pupil size,12-17 refractive error,18-24 CCT 
and IOP 25,26,27,28,29,30). 

Data Generation Process: Data generation and analysis were 
performed using Python and libraries such as NumPy (V2.0.1)31 
for numerical computations, pandas 32 for data manipulation, 
and matplotlib 33 and seaborn 34 for data visualisation. The sim-
ulated datasets were generated using statistical models ap-
propriate for each variable. For example, normal distributions 
were used for pupil diameter, while refractive error data were 
modelled to exhibit skewness akin to real-world clinical data. 

The simulated datasets are available through the Open Sci-
ence Framework (OSF) at DOI: 10.17605/OSF.IO/6EYMW,35 
ensuring transparency and allowing readers to replicate the 
analyses presented.

As the study involved simulated data and a review of exist-
ing literature, no ethical approval was required. The simulated 
data do not represent real patient information, eliminating 
patient confidentiality and privacy concerns.

By combining a thorough literature review with the cre-
ation of simulated clinical datasets, the article bridges theo-
retical knowledge and practical application. This integrative 
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approach is intended to enhance understanding and facilitate 
the application of statistical tools in clinical decision-making 
in eye care.

Fundamental statistical concepts

Interpreting cohort findings begins with collecting individual 
data points from a sample representing the target population. 
Each data point, such as pupil diameter (Figure 1), provides 
specific information about a single subject. When aggregated, 
these data points create a dataset that reflects the charac-
teristics and variability of the broader population.

Biological measurements inherently carry uncertainty 
and variability due to individual biological differences, envi-
ronmental influences, and measurement errors. Uncertainty 
reflects confidence in measurement accuracy and conclu-
sions, while variability pertains to natural data fluctuations. 
Thus, data collection alone is insufficient. Statistics provides 
the tools to quantify uncertainty and assess variability, ena-
bling researchers to distinguish between random fluctuations 
and meaningful patterns. By applying statistical techniques, 
researchers can make informed inferences about the popu-
lation, assess the reliability of the findings and estimate the 
likelihood that observed effects are due to chance. 

Data is not monolithic, varying by the nature of what 
is measured and the measurement technique used. Each 
data type requires specific analytical methods. In EVR, data 
is primarily empirical and derived from observation and ex-
perimentation. It can be categorised as nominal (e. g., type 
of cataract), ordinal (e. g., visual acuity), and metric (e. g., 
axial length), Table 1. Additionally, data can be defined by the 
values a variable can assume; continuous data spans a range 
limited only by measurement precision, while discrete data is 
restricted to specific, separate values, typically representing 
counts or whole numbers.

Data Preparation

Preparing the data for analysis is essential for accurate results 
and involves exploration, transformation and validation. Data 
exploration allows the researcher to understand how the data 
will be used and determine how to clean, structure and organ-
ise it. Transformation includes structuring the data, organising 
it relationally, and normalising it by removing redundancies. 
Cleaning addresses irregularities, including missing values, 
inaccuracies and outliers.36

Implementing validation rules, such as range and consist-
ency checks, during data entry reduces error rates. Regular 
audits identify anomalies, and duplicate detection prevents 
double-counting of data points. Effective data management, 
including Standard Operating Procedures (SOPs) for data 
collection, entry, and storage, ensures consistency and relia-
bility. Training personnel and using Electronic Data Capture 
(EDC) systems with validation tools further improve data 
quality. Additionally, statistical quality control measures, such 
as control charts and process capability analysis, monitor data 
collection over time, detect shifts or trends that may signal 
quality issues and ensure adherence to quality standards.36,37

Missing Data

Missing data is a common research issue that can introduce 
bias, reduce statistical power, and compromise study gener-
alisability. In clinical research, missing data may result from 
patient dropouts, non-compliance, technical issues dur-
ing data collection, or data entry errors. Addressing missing 
data requires understanding the underlying mechanisms 
and applying suitable statistical methods.38,39 Missing data 
falls into three categories: Missing Completely At Random 
(MCAR), Missing At Random (MAR) and Missing Not At 
Random (MNAR),40 Table 2. The choice of method depends 

Figure 1: Visualisation of age versus pupil diameter for (a) one participant and (b)all participants from a simulated cohort. Gender differences 
are depicted, providing insights into how pupil diameter distribution varies with age. (c) A histogram of pupil diameter distribution across a 
simulated cohort. The histogram represents pupil diameters for 1,000 individuals, with the horizontal axis showing size in millimetres and the 
vertical axis indicating the number of individuals. Each bar corresponds to a 0.25 mm diameter bin. A vertical dashed line marks an individu-
al’s pupil size, while a thin blue line outlines the overall distribution shape.
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on the type of missingness and study context, Table  A1. 
Figure 2 presents a step-by-step approach for addressing  
missing data.

Outliers

Outliers are data points that deviate significantly from the 
dataset and may arise from measurement errors, data entry 
mistakes, or true extreme values due to biological variability 
or rare conditions. Identifying and appropriately managing 
outliers is essential to maintaining data integrity and valid 
statistical analysis.45,46 Table 3 summarises various meth-
ods for outlier detection along with their applications and  
limitations.

After detecting outliers, they should be carefully exam-
ined and managed. The first step is verification, involving 
checks for data entry errors or measurement inaccuracies, 
such as typographical mistakes or instrument calibration 
issues. Determining if the outlier is clinically plausible or 
represents an extreme physiological condition is also  
important.45,46

Researchers have several options for handling outliers. 
Retaining them is appropriate if they represent valid observa-
tions, though this may increase variability and affect statistical 
robustness. Conversely, excluding outliers is justified if they 
are errors or do not represent the studied population, with 
predefined exclusion criteria to prevent bias. Alternatively, 
data transformations (e. g., logarithmic) can reduce the influ-
ence of outliers without removal, and robust methods, such 

Table 1: Classification of Data Types and Their Applications in Ophthalmic Research

Type/Scale Description Examples/Application

Nominal Data Characterised by discrete categories or labels with 
no inherent order or ranking, nominal data often 
captures qualitative distinctions crucial to clinical 
practice.

Key Characteristics:
No Order: Categories are simply names or  
identifiers; there is no intrinsic ranking or hierarchy.
No Distance: The „distance“ between categories  
is undefined and carries no quantitative meaning.

Eye colour (blue, brown, green); Type of cataract 
(nuclear, cortical, posterior subcapsular);  
Presence/absence of a specific ocular condition

Statistical Approach: Analysis often focuses on 
counts, frequencies, proportions, and associations 
between nominal variables and other data types.

Ordinal Data Ordinal data closes the gap between qualitative and 
quantitative information by representing categories 
with a natural order or ranking.

Key Characteristics:
Ordered Categories: Categories have a clear  
sequence or progression, but the intervals between 
them may not be equal.
Unequal Distances: The difference between catego-
ries is not necessarily consistent or quantifiable.

Visual acuity scores (20/20, 20/40, 20/200);  
Severity scales for dry eye disease (mild, moderate, 
severe); Grading scales, Likert scales

Statistical Approach: Median, percentiles, and 
non-parametric tests are commonly used for  
ordinal data analysis.

Metric Data Encompassing numerical measurements with  
meaningful and quantifiable intervals, metric data 
underpins a vast array of ophthalmic research.

Key Characteristics:
Meaningful Intervals: The difference between any 
two values on the scale is consistent and carries 
quantitative significance.
Further Classification: Metric data is further  
divided into:
1.  Interval Data: Possesses a consistent scale but 

lacks a true zero point. 
2.  Ratio Data: Features a consistent scale and a  

true zero point, representing the absence of the 
measured attribute. This allows for meaningful 
ratios and a wider range of statistical analyses.

Interval Data: Temperature in Celsius or Fahrenheit, 
and some psychometric scales used in vision  
research such as, Decibels in visual field testing). 
Visual acuity in LogMAR.

Ratio Data: Intraocular pressure, axial length,  
and corneal thickness.

Statistical Approach: Metric data opens the door  
to a broad spectrum of statistical techniques,  
including means, standard deviations, correlations, 
and parametric tests.
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as least absolute deviations (LAD) or M-estimators, minimise 
the influence of extreme values on the analysis.48

Outliers can significantly impact clinical research and 
practice. They may sometimes represent novel findings, such 
as rare clinical presentations that warrant further investiga-
tion. For instance, an unusually early onset of age-related 
macular degeneration (AMD) could reveal insights into atyp-
ical disease progression or unique risk factors. However, out-
liers can also distort statistical analyses, leading to erroneous 
conclusions. Extreme values can skew parameter estimates, 
compromising study validity. This is particularly relevant in 
risk stratification, where identifying outliers can help identify 
high-risk patients who may need special interventions. In 
clinical settings, outliers often underscore important con-

siderations. For example, in visual field testing, a subset of 
glaucoma patients with unusually rapid progression may indi-
cate non-compliance with the treatment or a more aggressive 
disease variant requiring closer monitoring.49-52 Likewise, an 
unusually long axial length in biometric measurements may 
suggest pathological myopia, prompting further investigation 
or treatment adjustments.53,54

Descriptive Statistics

Descriptive statistics are fundamental tools that summarise 
and organise data without making inferences or predictions, 
providing a snapshot of a dataset’s key features. In EVR, where 

Table 2: Types of Missing Data Mechanisms and Their Implications in Clinical Research 40

Type Definition Mathematical Rep-
resentation

Implications Clinical Example

Missing 
Completely 
at Random 
(MCAR) 

The probability 
of missingness is 
independent of 
both observed 
and unobserved 
data.

P (M = 1 | X,Y)
= P (M = 1)

M is the missingness  
indicator, meaning M = 1  
if data is missing and  
M = 0 if data is present.

X represents the  
observed data.

Y represents the unob-
served or missing data.

Data are a random subsample of the 
original data.

Analyses remain unbiased when using 
only complete cases.

This assumption allows for unbiased 
statistical estimates, though it is  
generally challenging to satisfy in 
real-world data.

Missing visual acuity 
measurements due 
to random equip-
ment malfunction 
affecting all patients 
equally.

Missing  
at Random 
(MAR) 

The probability 
of missingness 
depends only 
on the observed 
data and not on 
the unobserved 
data

P (M = 1 | X,Y)  
= P (M = 1 | X)

Missingness can be accounted for by 
conditioning on observed variables.

This assumption is less restrictive than 
MCAR and is often more applicable 
in real-world data, allowing research-
ers to make valid inferences using 
appropriate statistical methods, such 
as multiple imputation or maximum 
likelihood, without introducing bias 
from the missing data pattern.

Patients with  
severe diabetic 
retinopathy are  
less likely to return 
for follow-up visits, 
and their severity  
is recorded in  
previous visits.41,42

Missing  
Not at 
Random 
(MNAR) 

The probability 
of missingness 
depends on 
unobserved data 
itself (most chal-
lenging scenario 
to address).

P (M = 1 | X,Y)
= P (M = 1 | Y)

Missingness is related to the missing 
values themselves.

In MNAR situations, standard methods 
like multiple imputation or maximum 
likelihood are generally insufficient on 
their own because they rely on the as-
sumption that missingness depends on 
observed data. Addressing MNAR data 
often requires additional modelling or 
sensitivity analysis and, in some cases, 
external data or assumptions to make 
the data analysis valid.

Patients experi-
encing severe side 
effects (unrecord-
ed because they 
dropped out) are 
more likely to dis-
continue partici-
pation in a clinical 
trial.43,44
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data ranges from biometric measurements to patient-re-
ported outcomes, descriptive statistics help distil complex 
information into clear, interpretable metrics.

Measures of Central Tendency

Measures of central tendency identify the central point 
around which data values cluster. The primary measures are 
the mean, median, and mode, each providing unique insights, 
especially when analysing ophthalmic data with specific dis-
tribution characteristics, Table 4 and Figure 3. 

In multicentre studies or meta-analyses, where data orig-
inates from various sources with different sample sizes, the 
weighted mean can account for these differences among 
studies, yielding a more accurate overall estimate. When data 
is log-normally distributed or involves growth rate, such as 
bacterial counts 60 in ophthalmic infections, the geometric 
mean provides a more suitable measure of central tendency.

 

Figure 2: Step-by-step approach for handling missing data in  
biomedical research (© Daniela Oehring 2024)

Missing Data Analysis in
Biomedical Research

1. Assess Missing Data

Identify extent and patterns of missingness
Determine mechanism: MCAR, MAR, or MNAR
Use diagnostic tools and visualizations

2. Choose Appropriate Method

Select based on missing data mechanism
Consider study design and research question
Common methods: multiple imputation, maximum likelihood

3. Implement and Analyze

Apply chosen method(s) to dataset
Conduct primary analysis
Compare results using different approaches

4. Perform Sensitivity Analysis

Test robustness of findings
Vary assumptions about missing data mechanism
Consider alternative imputation methods

5. Report and Interpret

Document missing data handling process
Report results from all analyses
Discuss potential impact on conclusions

Measures of Dispersion

Measures of dispersion quantify variability within a dataset, 
complementing central tendency measures by providing 
insight into data homogeneity, Table 5. Homogeneity refers 
to the degree of similarity or uniformity among data points.61 
In clinical settings, understanding population variability is es-
sential for interpreting individual measurements. For instance, 
IOP data for individuals aged 0 to 80 tends to cluster around 
an age-specific mean, Figure 4. However, central tendency 
measures alone do not capture the variability within the co-
hort. Measures of dispersion are essential in estimating the 
range of values an individual might exhibit, influenced by the 
data scale and the nature of the measurements. 

Data Distribution Characteristics

Data distribution is critical for selecting appropriate statistical 
methods and interpreting results accurately, as it describes 
how data points are spread across various values in a dataset. 
It provides a statistical overview of frequency and likelihood 
for measurements, guiding expectations and informing clin-
ical decision-making.69 Understanding the distribution helps 
determine if assumptions like normality hold, influencing 
the validity of results. Key properties include central ten-
dency, dispersion, skewness, and kurtosis, which together 
characterise the shape, spread, and extremities of the data. 
Skewness measures asymmetry around the mean, indicating 
if data clusters more on one side, while kurtosis quantifies the 
sharpness of a distribution’s peak, reflecting its propensity 
to produce outliers. Figure 5 illustrates various distribution 
scenarios, and Table 6 summarises the types of skewness and 
kurtosis with clinical examples. 

Skewness can be categorised based on thresholds as 
approximately symmetric (skewness between −0.5 and 0.5), 
moderately skewed (between −1 and −0.5 or between 0.5 
and 1) and highly skewed (below −1 or above 1). These thresh-
olds may vary by field of study, so it is important to consider 
skewness in the context of data and analysis goals. Skewed 
data may violate assumptions of parametric statistical tests, 
which generally assume normal (symmetrical) distributions. 
Data transformation (e. g., logarithmic) or non-parametric 
statistical methods may be necessary for valid results. Kur-
tosis helps assess outlier risk; for instance, in clinical trials, a 
leptokurtic distribution in outcomes may prompt additional 
scrutiny of extreme values, ensuring they are genuine obser-
vations, not errors. It also informs statistical choices, as some 
tests are more robust to kurtosis deviations. 

Data Normality

Understanding data distribution is fundamental in statistics, 
as it guides the selection of statistical tests and the validity 
of inferences drawn from the data.70 The normal, or Gaussian, 
distribution is particularly central to statistical theory and 
practice, especially in EVR. A symmetrical, bell-shaped curve 
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Table 3: Methods to detect outliers  47

Type Characteristics

z-scores
or
Standard Scores

Measure how many standard deviations a data point is from the mean. The z-score is calculated as:  
z = (x − μ) / σ

z is the z-score of the data point.
X is the value of the data point.
μ is the mean of the dataset.
σ is the standard deviation of the dataset. 

Interpretation of Z-scores
•  A z-score of 0 means the data point is exactly at the mean.
•  Positive z-scores indicate that the data point is above the mean.
•  Negative z-scores indicate that the data point is below the mean.
•  Z-scores close to +1 or −1 mean the data point is within one standard deviation of the mean, while scores 

beyond ±2 or ±3 standard deviations are typically considered outliers, depending on the context. 

This method assumes the data follow a normal distribution, which limits its applicability to normally  
distributed datasets.

Modified 
z-score

The median absolute deviation (MAD) is a more robust alternative for non-normally distributed data.  
The modified z-score is calculated as: 
z modified = [0.6745 (xi − median)] / MAD

z modified is the modified z-score of the data point.
xi is the value of the data point.
Median is the median of the dataset.
MAD (Median Absolute Deviation) is calculated as the median of the absolute deviations from the median: 
MAD = Median(|xi − Median|)

The constant 0.6745 serves as a scaling factor that adjusts the MAD to be comparable to the standard 
deviation for large normal distributions, ensuring that modified z-scores align more closely with traditional 
z-scores in well-behaved data. This method is less sensitive to extreme values and better suited for skewed 
distributions

Interpretation of Modified Z-scores
•  A modified z-score of 0 indicates a value equal to the median.
•  Higher absolute modified z-scores indicate values further from the median.
•  Generally, a modified z-score of greater than 3.5 is often used as a threshold for identifying  

potential outliers.
Modified z-scores are especially useful when the data may include outliers or does not meet the  
assumption of normality. This approach provides a more stable measure of variability for identifying  
unusual observations in non-normal distributions.

Boxplot Visually displays outliers as points exceeding 1.5 times the interquartile range (IQR) from the quartiles.  
Boxplots are particularly useful in exploratory data analysis, providing a simple and visual way to detect 
outliers. Boxplots, though effective for visualising data distribution and detecting outliers, have limitations. 
They rely on the 1.5× IQR rule, which may mislabel points as outliers in skewed or small datasets and does 
not distinguish the severity of outliers. This approach assumes symmetry and may overlook multivariate 
outliers or ignore nuances in distribution shape. While boxplots are valuable for quick exploratory analysis, 
additional methods are often necessary to reliably identify true outliers, particularly in complex datasets.

Continued on next page
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Type Characteristics

Grubbs‘ test  Can be used to detect a single outlier in a univariate dataset. The test statistic is defined as:
G = (|xi − x) / s

xi is the value of the suspected outlier. 
x is the sample mean.
s is the sample standard deviation.

The test compares the G value to a critical value from Grubbs‘ distribution table at a chosen significance 
level (often 0.05). If G exceeds this critical value, the suspected point is considered an outlier. Grubbs‘ test 
also assumes normality, making it less effective for non-normally distributed data. For datasets with multiple 
outliers, repeated application of the test is needed, which may reduce its accuracy.

Mahalanobis 
distance*

Mahalanobis distance is tailored for settings where variables are interrelated, making it ideal for detecting 
outliers in complex datasets typical in vision sciences. This distance calculation utilises the entire data struc-
ture through its covariance, providing a more accurate spatial assessment compared to simpler distance 
measures like Euclidean. Practical for both clinical diagnostics and research, Mahalanobis distance helps 
identify unusual data patterns effectively and is accessible via standard statistical software.

The Mahalanobis distance D² = (x − μ)T ∑−1 (x − μ)

x is the vector of the data point’s values.
μ is the mean vector of the dataset.
Σ is the covariance matrix of the dataset.
(x − μ)T is the transpose of the deviation vector.

(Continuation) Table 3: Methods to detect outliers  47

Table 4: Measures of Central Tendency and Their Applications in Ophthalmic Research 55

Measure Description Application

Mean  
(Arithmetic  
Average) 
Applicable for 
metrical data  
with/without  
natural zero

The mean is calculated by summing all 
data points and dividing by the number of 
observations. It is sensitive to extreme values 
(outliers), which can significantly influence 
the mean in small sample sizes.

Visual Acuity Scores: When aggregating visual acuity 
measurements, when using the logarithm of the minimum 
angle of resolution (logMAR) scale, the mean provides 
a precise average that accommodates the logarithmic 
nature of visual acuity data.56

Central Corneal Thickness (CCT): Mean CCT values  
are important in assessing risks for diseases like corneal 
ectasia and glaucoma, where deviations from the mean 
can have clinical significance.57

Median
Applicable for 
metrical data  
with/without  
natural zero as well 
as ordinal data

The median is the middle value when data 
are ordered sequentially. It is robust against 
outliers and skewed data distributions, mak-
ing it valuable in ophthalmic research where 
data may not be normally distributed.

Intraocular Pressure (IOP): IOP readings often exhibit 
skewness due to the presence of glaucomatous eyes with 
elevated pressures. The median provides a more repre-
sentative central value in such cases.58

Mode
Applicable for all 
data scales: metric, 
ordinal, nominal

The mode represents the most frequently 
occurring value in a dataset. It is particularly 
useful for categorical or discrete data.

Classification of Refractive Errors: Identifying the mode 
in a population can highlight the most common refractive 
error (e. g., myopia) within a specific demographic.59
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Figure 3: Visual representation of simulated health data (n=1000) showcasing three key central tendency measures (mean, median, and 
mode). The graphs show (a) the distribution of gender (nominal), (b) age groups (ordinal), and (c) refractive error (metric) within the cohort. 
The graph shows the distribution of refractive error in the sample, with the bar heights indicating the number of individuals with specific 
refractive errors. The mean is represented by the red dashed line (approximately 0.3 D), the median (0.75D) and the mode at (1.0D).

characterises this continuous distribution centred around the 
mean with a defined standard deviation, Figure 6.

The normal distribution applies to continuous interval or 
ratio scale data. In EVR, many biometric measurements, such 
as corneal thickness, axial length and visual acuity in logMAR 
units, are ratio-scaled continuous data and can be modelled 
using the normal distribution,78 provided they meet criteria 
for symmetry and lack of significant kurtosis. The normal 
distribution is foundational in statistical analysis, underpin-
ning several fundamental methods, especially parametric 
tests like t-tests, analysis of variance (ANOVA), and linear 
regression, which assume normally distributed data or re-
siduals. Violation of this assumption may lead to inaccurate r 
esults. 

A related and critical concept is the Central Limit Theorem 
(CLT), which states that as the sample size increases, the dis-
tribution of sample means approaches normality, regardless 
of the population’s original distribution. This principle enables 
researchers to use normal-based inferences with large sam-
ples, even if the underlying data are non-normal.79

The normal distribution is also essential for statistical infer-
ence, particularly when calculating confidence and prediction 
intervals. These intervals allow for accurate estimation of 
population parameters and prediction of future observations. 
They rely on normal distribution properties, which ensure 
reliable inferences. Lastly, the normal distribution facilitates 
standardisation, where z-scores (Table 3) measure the dis-
tance of a data point from the mean in standard deviation 
units. This standardisation compares across different scales 
or distributions.

Assessing Normality 
Various graphical and statistical methods can be used to 
assess normality, each with distinct strengths and limitations. 
Combining graphical and statistical approaches (Table 7) 
provides a more robust assessment of data normality.70

Histograms: Histograms provide a straightforward rep-
resentation of data frequency distributions. An asymmetric, 
bell-shaped curve generally indicates normality; however, 
interpreting histograms can be subjective, particularly with 
smaller samples where the distribution shape may be unclear. 
Additionally, histograms may not reveal subtle deviations 
from normality.
 
Q-Q (Quantile-Quantile) Plots: Q-Q plots compare the 
quantiles of the sample data to those of a theoretical nor-
mal distribution, providing insight into data distribution and 
identifying outliers, skewness and kurtosis. The x-axis repre-
sents theoretical quantiles from a reference distribution (e. g., 
normal distribution), while the y-axis shows the quantiles of 
the sample data. Each point corresponds to a quantile of the 
dataset plotted against a quantile of the reference distribu-
tion. To assess normality, the (Euclidean) distance between 
each data point and the corresponding point on the diagonal 
(representing the ideal case for a normal distribution) is cal-
culated in Figures 8a and 8b.
   
Typical Q-Q plot scenarios include:
• Straight Line: If the points align closely along the diagonal, 

the sample data likely follows a normal distribution.
• Upward or Downward Curvature: Indicates right (upward) 

or left (downward) skewness, respectively.
• S-shaped Curve: Suggests heavy tails in the data, indi-

cating more extreme values than expected in a normal 
distribution.

• Outliers: Points far from the line represent outliers or 
significant deviations from the expected distribution.

P-P (Probability-Probability) Plots: P-P plots display the 
cumulative probabilities of the sample data (y-axis) against 
those of a normal distribution (x-axis). Each data point on a 
P-P plot represents the probability of a sample data point 
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Table 5: Measures of Dispersion and Their Applications in Ophthalmic Research 61

Measure Description Clinical Scenario Example

Range
Applicable for 
metrical, ordinal 
data

The range is the simplest measure, calculated  
as the difference between the maximum and  
minimum values.

Axial Length Variations: Reporting the range of 
axial lengths in a myopic population can inform 
the potential variability in surgical outcomes  
for procedures like implantable Collamer lens 
insertion.62,63

Variance and 
Standard  
Deviation (SD)
Applicable only  
for normally  
distributed,  
metrical data

Variance represents the average squared deviation 
from the mean in a normally distributed data set 
(see chapter 5.4), while the SD is the square root of 
variance, providing dispersion in the same units as 
the data.

Single SD (1σ): Approximately 68 % of the data falls 
within one standard deviation above and below the 
mean, about 34% to either side. 

Double SD (2σ): Approximately 95 % of the data falls 
within two standard deviations above and below the 
mean, about 47.5% to either side. 

Triple SD (3σ): Approximately 99.7 % of the data 
falls within three standard deviations above and 
below the mean. This translates to about 49.85 %  
to either side. 

Retinal Thickness Measurements: SD is essential 
when assessing the variability of retinal nerve  
fibre layer (RNFL) thickness, aiding in the early 
detection of glaucoma progression.64,65

Coefficient of 
Variation (CV)
Applicable only  
for normally  
distributed,  
metrical data

The CV is a normalised measure of dispersion, 
calculated as the SD divided by the mean, often 
expressed as a percentage.

Consistency of Surgical Outcomes: In studies  
comparing surgical techniques, the CV can 
highlight which method yields more consistent 
refractive outcomes postoperatively.66

Interquartile 
Range (IQR)
Applicable for  
metrical, ordinal 
data

The IQR spans the middle 50 % of data, between 
the 25th (Q1) and 75th (Q3) percentiles, and is less 
affected by outliers.

Patient-Reported Outcome Measures (PROMs): 
IQR is useful in summarising PROMs like visual 
function questionnaires, where data may be  
ordinal and skewed.67,68

Advanced Considerations

Bootstrapping 
for Confidence 
Intervals

For small sample sizes or non-normally distributed data, bootstrapping methods can estimate  
the variability and construct confidence intervals for central tendency measures.
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Figure 4: The relationship between age 
and intraocular pressure (IOP) in a gener-
ated dataset shows IOP variation across 
ages for male and female participants.  
(a) IOP measurements for all participants, 
with individuals aged 40 highlighted; the 
red line represents the (running) mean IOP 
per year. (b) A box plot detailing IOP at age 
40, illustrating key measures of disper-
sion, including range (distance between 
maximum and minimum, red), standard 
deviation (SD, green), and interquartile 
range (IQR, distance between Q1 and Q3, 
blue).

Figure 5: Set of different distributions representing variations in distribution skewness and kurtosis. (a) Normal distribution with skewness 
and kurtosis is close to zero. (b and c) Right skewed (positive Skewness) and Left skewed (negative skewness), respectively. (d and e) High 
Kurtosis and Low Kurtosis distributions.
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Table 6: Summary of skewness and kurtosis 70

Skewness Characteristics Clinical Scenario

Type

Skewness = 0 Indicates a symmetrical distribution  
where the left and right tails are balanced, 
Figure 5a.

Visual acuity measurements in a large, healthy popu-
lation may approximate a symmetrical distribution, as 
most values cluster around a central point, with fewer 
extremes on either side.71

Positive Skewness 
(Right-Skewed  
Distribution)
Skewness > 0

The tail of the distribution extends to the 
right, indicating that higher values are less 
frequent, Figure 5b.

IOP measurements often exhibit right skewness, as 
most patients have normal pressures, while a few have 
elevated levels. Recognising this helps clinicians moni-
tor those with high IOP for potential risk factors.72

Negative Skewness 
(Left-Skewed  
Distribution)
Skewness < 0

The tail extends to the left, suggesting 
lower values are less frequent, Figure 5c.

Some visual field indices, where most patients achieve 
high scores, show left skewness. Rare low scores may 
indicate underlying pathology, guiding clinicians to 
investigate potential issues in affected patients.73

Kurtosis

Mesokurtic
Kurtosis = 3 
(or Excess Kurtosis = 0)

This indicates a mesokurtic distribution, 
which has the same kurtosis as a normal 
distribution, Figure 5a.

—

Leptokurtic 
(High Kurtosis) 
Kurtosis > 3 
(or Excess Kurtosis > 0)

A leptokurtic distribution has a sharp peak 
and heavy tails, indicating that data are 
closely clustered around the mean but 
with a higher likelihood of extreme values, 
Figure 5d.

Measurements of endothelial cell counts in the cornea 
may show leptokurtic distributions, where most values 
are near the mean, but occasional significant deviations 
occur. High kurtosis alerts researchers to the potential 
impact of outliers on statistical analyses and clinical 
interpretations.74,75

Platykurtic 
(Low Kurtosis)
Kurtosis < 3 
(or Excess Kurtosis < 0)

A platykurtic distribution features a flatter 
peak and thinner tails, suggesting a more 
uniform data spread with fewer extreme 
values, Figure 5e.

A platykurtic distribution might indicate a wide range 
of common values with less propensity for outliers in 
cases such as refractive error measurements in a diverse 
population.76,77

Figure 6: Normal Distribution with l 
abelled standard deviations (1σ, 2σ, 3σ), 
illustrating the proportion of data falling 
within each range. The simulated bell 
curve (red) demonstrates the concept of 
normality in clinical data distribution.
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plotted against its corresponding probability from a theoreti-
cal distribution. Deviations from the line suggest violations of 
normality, similar to those described for Q-Q plots. While Q-Q 
plots provide information about the shape of the distribution, 
P-P plots assess how well the overall probabilities align be-
tween the theoretical and sample distributions. Additionally, 
P-P plots are less sensitive to deviations in the tails of the 
distribution compared to Q-Q plots.

Statistical Tests: While statistical tests (Table 7) provide 
valuable insights into the normality of data, they have limita-
tions. A primary challenge is their sensitivity to sample size; 
in small samples, these tests may lack the power to detect 
non-normality (low power), while in large samples, they may 

identify trivial deviations as significant (over-sensitivity). Con-
sequently, relying solely on statistical tests can be misleading, 
especially when combined with other tests assuming normal-
ity. This highlights the importance of employing graphical 
and statistical methods to understand the data distribution 
comprehensively.

Clinical Implications and Meaningfulness of Normality
Assumption of normality significantly impacts clinical re-
search and practice, directly influencing the validity of statis-
tical tests. Incorrectly assuming normality can lead to invalid 
results, ultimately influencing clinical decisions. For instance, 
diagnostic thresholds, such as reference ranges for retinal 
nerve fibre layer thickness, are based on the normal distri-

Figure 7: Histograms for Normality  
Assessment Histograms of normally  
distributed and skewed data, with  
accompanying kernel density estimates 
(KDE) and p-values from the Shapiro-Wilk 
and Kolmogorov-Smirnov tests. These 
highlight the visual and statistical assess-
ment of normality in clinical data.

Figure 8: (a and b) Quantile-Quantile plots for normal and skewed data, (c and d) Probability-Probability plots for normal and skewed data.
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bution to identify pathological conditions accurately.81,82 
Deviations from this assumption can result in misclassification 
of patients, affecting diagnosis and treatment. 

In personalised medicine, understanding the distribution 
of biomarkers, like IOP or central corneal thickness, enables 
clinicians to tailor interventions to individual patient profiles. 
A comprehensive understanding of how these biomarkers are 
distributed within populations informs individualised treat-
ment plans, accounting for patient variability and ensuring 
more precise, targeted therapeutic approaches.83,84

The importance of ensuring normality in clinical data is 
particularly evident in treatment efficacy studies. For instance, 
confirming that IOP reduction measurements are normal-
ly distributed in a clinical trial evaluating a new glaucoma 
medication is critical for valid comparisons using parametric 
tests.85 Accurate statistical analysis facilitates evidence-based 
decisions regarding the treatment‘s efficacy, ultimately de-
termining its adoption in clinical practice.

Data transformation 
When data significantly deviate from normality, advanced 
techniques can help approximate normality and enhance the 
accuracy of statistical analyses. One commonly used strategy 
is data transformation. For instance, logarithmic transfor-
mations effectively address right-skewed data with positive 
values, such as reducing skewness in IOP measurements 
that contain high outliers, Figure 9a.58,72 Similarly, square 
root transformations help count data or variables following 
a Poisson distribution, such as the number of microaneu-
rysms in diabetic retinopathy studies, Figure 9b.86,87 Another 
powerful technique is the Box-Cox transformation, which 
systematically identifies the optimal power transformation 
to achieve normality, providing a more formalised approach 
to data normalisation, Figure 9c.88

Some ophthalmic data may not follow a standard dis-
tribution at all. In cases of mixed distributions, specialised 
approaches are required. For instance, bimodal distributions, 

Table 7: Statistical Tests for Normality in Clinical Data 70

Test Description Limitations

Shapiro- 
Wilk Test

The Shapiro-Wilk test assesses the null hypothesis that 
the data are normally distributed. It is particularly effec-
tive for small to moderate sample sizes (typically < 50 
samples), and it is considered one of the most powerful 
tests for detecting departures from normality. A p-value 
less than the chosen significance level (e. g., 0.05) indi-
cates that the data deviate significantly from a normal 
distribution.80

The Shapiro-Wilk test can be overly sensitive  
to even slight deviations from normality in  
large datasets, leading to false positives where 
minor departures from normality are flagged as 
significant.

Kolmogor-
ov-Smirnov-Test

The Kolmogorov-Smirnov test compares the empirical 
distribution function of the sample data to the cumu-
lative distribution function of a specified distribution, 
such as the normal distribution. It is more appropriate 
for larger samples.

Like the Shapiro-Wilk test, the K-S test may be 
too sensitive in large samples, detecting devia-
tions from normality that may not significantly af-
fect the results of parametric tests. Additionally, 
this test may have low power in smaller samples, 
failing to detect non-normality when it exists.

Anderson- 
Darling Test

This test is an extension of the K-S test but gives more 
weight to the tails of the distribution, making it more 
sensitive to deviations in the extremes. It is suitable for 
detecting both general departures from normality and 
specific tail deviations.

Like other normality tests, it may be overly 
sensitive in large samples, leading to significant 
results even for minor deviations that do not 
impact overall analysis.

Lilliefors-Test A variation of the K-S test, the Lilliefors test is designed 
for situations where the mean and variance of the pop-
ulation are unknown. It is often used as an alternative to 
the Shapiro-Wilk test when the sample size is moderate 
to large.

The Lilliefors test shares similar limitations with 
other tests, particularly its sensitivity to small 
deviations in large datasets.

D’Agostino- 
Pearson Test

This test assesses whether the skewness and kurtosis of 
the data differ significantly from that of a normal  
distribution. It combines two tests – one for skewness 
and one for kurtosis – making it suitable for detecting 
both asymmetry and heavy or light tails.

This test assumes a reasonably large sample size 
(at least 20 – 50 data points) for accurate results 
and, like other tests, may flag minor deviations in 
large samples as significant.
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characterised by two distinct peaks, can occur in refractive 
error measurements, reflecting separate peaks for myopia and 
hyperopia.76,77 Similarly, multimodal distributions may appear 
in populations with subgroups, such as age-related variations 
in lens opacity, requiring techniques like finite mixture models 
to model the data accurately.89,90 When traditional transfor-
mations are insufficient to achieve normality or the data‘s 
structure inherently defies such transformations, non-para-
metric methods provide a robust alternative. This aligns with 
best statistical practices, which recommend tailoring the 
analytical approach to the data‘s characteristics rather than 
conforming the data to a preferred test.91 Non-parametric 
methods are invaluable in these scenarios, offering flexibility 
and reliability when parametric assumptions are violated. The 
subsequent articles in this series will delve deeper into the 
specific statistical tests suitable for these complex scenarios, 
ensuring a comprehensive understanding of both parametric 
and non-parametric methodologies.

Reporting Descriptive Statistics in  
Publications or Trial Reports

Descriptive statistics summarise the key features of a data-
set, providing essential insights into patient demographics, 
clinical outcomes, and critical variables. By summarising data 
concisely, descriptive statistics help clinicians and researchers 
understand the general characteristics of their study popula-
tion and highlight significant trends.

Reporting Standards for Different Types of Research: Ad-
hering to established reporting standards ensures clarity, 
reproducibility, and transparency across various research 
disciplines. Different studies, such as randomised controlled 
trials, observational studies, qualitative research, and me-
ta-analyses, require specific reporting guidelines (e. g., CON-
SORT for clinical trials,92 STROBE for observational studies,93 
PRISMA for systematic reviews 94). Researchers should famil-
iarise themselves with and follow the appropriate guidelines 
for their study design to enhance the quality and credibility 

Figure 9: Original and Transformed Data Distributions. a), c), and e) depict the original Exponential, Poisson, and Gamma distributions.  
Panels b), d), and f) show the corresponding transformed distributions using logarithmic, square root, and Box-Cox transformations.  
Each histogram includes a Kernel Density Estimate (KDE) and annotations for mean (red dashed line), median (green dash-dot line),  
mode (blue dotted line), skewness, and kurtosis, highlighting how each transformation normalises the data distribution.



16

Advancing Statistical Literacy in Eye Care: A Series for Enhanced Clinical Decision-Making  •  Daniela Oehring & Pedro M. Serra 

|   OCL • Volume 5 • No. 1 • January/February 2025     

of their reports. To effectively report descriptive statistics, 
researchers should:
• Ensure transparency in data handling, such as how missing 

data were addressed or outliers were managed.
• Clearly describe the data types (e. g., nominal, ordinal, 

continuous).
• Report measures of central tendency alongside variability.
• Specify sample sizes for each variable.
• Justify the choice of statistical measures (e. g., using me-

dian due to skewed distribution).

Best practices for reporting missing data involve distinguish-
ing between missing completely at random (MCAR), missing 
at random (MAR), and missing not at random (MNAR). Re-
searchers should employ appropriate statistical techniques 
(e. g., multiple imputations or maximum likelihood estimation) 
and report the extent and pattern of missing data, along 
with sensitivity analyses conducted to assess the results‘ 
robustness.

Outlier identification and management should be trans-
parent and systematic. Standard methods include z-scores, 
modified z-scores (for non-normal data), and graphical tech-
niques like boxplots. Researchers must evaluate outliers to 
determine their nature, whether they are data errors, valid 
physiological extremes, or measurement inaccuracies. Any 
decisions regarding the handling of outliers should be docu-
mented clearly to allow for critical evaluation and replication. 

Data visualisation is essential for conveying distribution 
shape and variability, helping to identify issues such as skew-
ness or outliers. Common methods include histograms, box-
plots and Q-Q plots.

Transparency in reporting is crucial for reproducibility. 
Researchers should include graphical representations of 
data distributions and discuss normality assumptions and any 
corrective measures taken. 

Descriptive statistics should be linked to clinical rele-
vance, demonstrating their impact on clinical outcomes and 
decision-making. For instance, defining normative ranges for 
clinical measurements can assist in diagnosing conditions, 
while variability in treatment outcomes can inform clinical 
efficacy. 

Conclusion

Rigorous and transparent reporting of descriptive statistics is 
essential for the integrity of clinical research. By following best 
practices – such as reporting central tendency and dispersion 
measures, properly managing outliers and missing data, and 
providing clear visualisations - researchers can enhance their 
findings‘ reliability and clinical relevance, ultimately improving 
patient care and outcomes in ophthalmic research. 
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Appendix
Table A1: Summary of Methods for Handling Missing Data

Method Applicability Advantages Limitations Clinical Application

Complete  
Case Analysis 

Listwise or Case 
wise Deletion.

Applicable for 
MCAR

Simplifies  
analysis

Reduces sample size; 
potential bias if not 
MCAR

Studies with truly random missing data 
but sufficient sample size. In studies with 
small sample sizes, such as those focused 
on rare ocular diseases, removing cases 
with missing data can severely compro-
mise the study's conclusions.

Single  
Imputation

MCAR or when 
missingness is 
minimal

Easy to  
implement

Underestimates  
variability; potential 
bias

Preliminary analyses; not recommended 
for final analysis

a) Mean or  
Median  
Imputation

Replaces missing 
values with the 
mean (for normally 
distributed data) 
or median (for 
skewed data) of 
observed values.

Simple and easy 
to implement.

Underestimates 
variability, leading  
to biased standard 
errors and confi-
dence intervals and 
ignoring relation-
ships between 
variables.

This method may obscure true  
associations, particularly in studies  
measuring average retinal thickness 
where relationships between  
variables are critical.

b) Regression 
Imputation

Predicts missing 
values based on 
regression models 
using other ob-
served variables.

Incorporates 
relationships  
between  
variables, 
improving the 
quality of  
imputed values.

Does not account 
for uncertainty in 
predictions, treating 
imputed values as 
known and poten-
tially leading to 
overconfidence in 
estimates.

This method might introduce bias  
in clinical research, as in studies of  
glaucoma progression where over- 
reliance on imputed values could  
misguide clinical interpretations.

Continued on next page
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Method Applicability Advantages Limitations Clinical Application

c) Last  
Observation 
Carried Forward 
(LOCF)

This method, com-
mon in longitudinal 
studies, replaces 
missing values with 
the last observed 
measurement.

Maintains  
sample size  
and is simple  
to apply.

Assumes no change 
over time, which is 
often unrealistic and 
can bias results.

LOCF is problematic for progressive 
conditions like glaucoma, where IOP may 
change significantly over time, making 
this approach inappropriate 95,96

Multiple  
Imputation

Robust method 
that accounts for 
the uncertainty in 
imputed values by 
generating multi-
ple datasets with 
different plausible 
estimates for miss-
ing data.

Applicable for 
MAR

Preserves  
variable  
relationships; 
valid inferences

Computationally 
intensive

Process:
1. Imputation: Generate mm complete 
datasets by imputing missing values 
multiple times from their predictive 
distribution.
2. Analysis: Perform statistical analysis  
on each dataset separately.
3. Pooling: Combine the results using 
Rubin‘s rules to derive overall estimates 
and standard errors.
Imputing missing OCT measurements 
based on observed patient characteris-
tics.97-102

Maximum  
Likelihood (EM)

Estimate model 
parameters by 
maximising the 
likelihood function 
using all available 
data, accounting 
for the missing 
data structure.

Applicable for 
MAR

Efficient  
estimates  
under correct 
model

Requires correct 
model specification

In glaucoma studies with intermittent 
follow-up data, the EM algorithm can 
be used to estimate progression rates 
using all available information, providing 
accurate estimates even with incomplete 
datasets.103,104

Weighting  
Methods (IPW)

Weighting 
methods, such as 
Inverse Probability 
Weighting (IPW), 
adjust for missing 
data by assigning 
weights to ob-
served cases based 
on the probability 
of being observed.    

Applicable for 
MAR

Utilises all data; 
reduces bias

Requires modeling 
missingness  
probabilities

In longitudinal studies of contact lens 
comfort, where dropout rates may 
depend on prior discomfort levels, IPW 
can adjust for differential dropout and 
improve the accuracy of results.105,106

Model-Based 
Approaches

Model-based  
approaches 
explicitly model 
the missing data 
mechanism. 

Applicable for 
MNAR

Models the 
missing data 
mechanism 
explicitly

These models require 
strong assumptions 
about the missing 
data mechanism, 
which are often 
difficult to verify. 
Misspecification 
can lead to biased 
results.

Handling dropout due to unobserved 
adverse effects in ocular medication 
trials.49,107,108
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